Neisseria meningitidis

not annotated - annotated - LINNAEUS only

20971901

Mapping of the Neisseria meningitidis NadA cell-binding site: relevance of predicted {alpha}-helices in the NH2-terminal and dimeric coiled-coil regions.

NadA is a trimeric autotransporter protein of Neisseria meningitidis belonging to the group of oligomeric coiled-coil adhesins. It is implicated in the colonization of the human upper respiratory tract by hypervirulent serogroup B N. meningitidis strains and is part of a multiantigen anti-serogroup B vaccine. Structure prediction indicates that NadA is made by a COOH-terminal membrane anchor (also necessary for autotranslocation to the bacterial surface), an intermediate elongated coiled-coil-rich stalk, and an NH(2)-terminal region involved in cell interaction. Electron microscopy analysis and structure prediction suggest that the apical region of NadA forms a compact and globular domain. Deletion studies proved that the NH(2)-terminal sequence (residues 24 to 87) is necessary for cell adhesion. In this study, to better define the NadA cell binding site, we exploited (i) a panel of NadA mutants lacking sequences along the coiled-coil stalk and (ii) several oligoclonal rabbit antibodies, and their relative Fab fragments, directed to linear epitopes distributed along the NadA ectodomain. We identified two critical regions for the NadA-cell receptor interaction with Chang cells: the NH(2) globular head domain and the NH(2) dimeric intrachain coiled-coil alpha-helices stemming from the stalk. This raises the importance of different modules within the predicted NadA structure. The identification of linear epitopes involved in receptor binding that are able to induce interfering antibodies reinforces the importance of NadA as a vaccine antigen.

21075927

XerCD-mediated site-specific recombination leads to loss of the 57-kilobase gonococcal genetic island.

Most strains of Neisseria gonorrhoeae carry the 57-kb gonococcal genetic island (GGI), as do a few strains of Neisseria meningitidis. The GGI is inserted into the chromosome at the dif site (difA) and is flanked by a partial repeat of the dif site (difB). Since dif is a sequence recognized by the site-specific recombinases XerC and XerD and the GGI shows evidence of horizontal acquisition, we hypothesized that the GGI may be acquired or lost by XerCD-mediated site-specific recombination. We show that while the GGI flanked by wild-type dif sites, difA and difB, is not readily lost from the gonococcal chromosome, the substitution of difB with another copy of difA allows the frequent excision and loss of the GGI. In mutants carrying two difA sites (difA(+) difA(+)), the GGI can be detected as an extrachromosomal circle that exists transiently. A mutation of xerD diminished GGI excision from the chromosome of a difA(+) difA(+) strain, while mutations in recA or type IV secretion genes had no effect on the loss of the GGI. These data indicate that the GGI is maintained by the replication of the chromosome and that GGI excision and loss are dependent upon the dif sequence and xerD. The detection of a circular form of the GGI in a wild-type strain suggests that GGI excision may occur naturally and could function to facilitate GGI transfer. These data suggest a model of GGI excision and loss explaining the absence of the GGI from some gonococcal strains and the maintenance of variant GGIs in some gonococcal and meningococcal isolates.